Exact Solution of Some Integral Equations over a Circular Disc
نویسنده
چکیده
Two-dimensional integral equations of the first kind over a circular disc are considered. The kernels involve the distance between two points on the disc raised to an arbitrary power. A review is given, comparing several published exact solutions for weakly-singular equations: these solutions are complicated, but three of them are shown to be equivalent. Some extensions to hypersingular equations are discussed.
منابع مشابه
An Axisymmetric Torsion Problem of an Elastic Layer on a Rigid Circular Base
A solution is presented to a doubly mixed boundary value problem of the torsion of an elastic layer, partially resting on a rigid circular base by a circular rigid punch attached to its surface. This problem is reduced to a system of dual integral equations using the Boussinesq stress functions and the Hankel integral transforms. With the help of the Gegenbauer expansion formula of the Bessel f...
متن کاملA Successive Numerical Scheme for Some Classes of Volterra-Fredholm Integral Equations
In this paper, a reliable iterative approach, for solving a wide range of linear and nonlinear Volterra-Fredholm integral equations is established. First the approach considers a discretized form of the integral terms where considering some conditions on the kernel of the integral equation it is proved that solution of the discretized form converges to the exact solution of the problem. Then th...
متن کاملApproximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations Using Taylor Expansion Method
In this study, a new application of Taylor expansion is considered to estimate the solution of Volterra-Fredholm integral equations (VFIEs) and systems of Volterra-Fredholm integral equations (SVFIEs). Our proposed method is based upon utilizing the nth-order Taylor polynomial of unknown function at an arbitrary point and employing integration method to convert VFIEs into a system of linear equ...
متن کاملAn effective method for approximating the solution of singular integral equations with Cauchy kernel type
In present paper, a numerical approach for solving Cauchy type singular integral equations is discussed. Lagrange interpolation with Gauss Legendre quadrature nodes and Taylor series expansion are utilized to reduce the computation of integral equations into some algebraic equations. Finally, five examples with exact solution are given to show efficiency and applicability of the method. Also, w...
متن کاملSolving integral equations of the third kind in the reproducing kernel space
A reproducing kernel Hilbert space restricts the space of functions to smooth functions and has structure for function approximation and some aspects in learning theory. In this paper, the solution of an integral equation of the third kind is constructed analytically using a new method. The analytical solution is represented in the form of series in the reproducing kernel space. Some numerical ...
متن کامل